

Standard Specification for Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service¹

This standard is issued under the fixed designation A 193/A 193M; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope

1.1 This specification² covers alloy and stainless steel bolting material for pressure vessels, valves, flanges, and fittings for high-temperature service. The term *bolting material* as used in this specification covers bars, bolts, screws, studs, stud bolts, and wire. Bars and wire shall be hot-wrought. The material may be further processed by centerless grinding or by cold drawing. Austenitic stainless steel may be carbide solution treated or carbide solution treated and strain-hardened. When strain hardened austenitic steel is ordered, the purchaser should take special care to ensure that Appendix X1 is thoroughly understood.

1.2 Several grades are covered, including ferritic steels and austenitic stainless steels designated B5, B8, and so forth. Selection will depend upon design, service conditions, mechanical properties, and high-temperature characteristics.

NOTE 1—The committee formulating this specification has included fifteen steel types that have been rather extensively used for the present purpose. Other compositions will be considered for inclusion by the committee from time to time as the need becomes apparent.

NOTE 2—For grades of alloy-steel bolting material suitable for use at the lower range of high-temperature applications, reference should be made to Specification A 354.

Note 3—For grades of alloy-steel bolting material suitable for use in low-temperature applications, reference should be made to Specification A 320/A 320M.

1.3 Nuts for use with this bolting material are covered in Section 13.

1.4 Supplementary Requirements S1 through S10 are provided for use when additional tests or inspection are desired. These shall apply only when specified in the purchase order.

1.5 This specification is expressed in both inch-pound units and in SI units. However, unless the order specifies the applicable M specification designation (SI units), the material shall be furnished to inch-pound units.

1.6 The values stated in either inch-pound units or SI units are to be regarded separately as standard. Within the text, the SI units are shown in brackets. The values stated in each system are not exact equivalents; therefore, each system must be used independently of the other. Combining values from the two systems may result in nonconformance with the specification.

2. Referenced Documents

- 2.1 ASTM Standards:
- A 194/A 194M Specification for Carbon and Alloy Steel Nuts for Bolts for High-Pressure or High-Temperature Service, or Both³
- A 320/A 320M Specification for Alloy/Steel Bolting Materials for Low-Temperature Service³
- A 354 Specification for Quenched and Tempered Alloy Steel Bolts, Studs, and Other Externally Threaded Fasteners⁴
- A 962/A 962M Specification for Common Requirements for Steel Fasteners or Fastener Materials, or Both, Intended for Use at Any Temperature from Cryogenic to the Creep Range³
- E 18 Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials⁵
- E 21 Test Methods for Elevated Temperature Tension Tests of Metallic Materials⁵
- E 112 Test Methods for Determining Average Grain Size⁵
- E 139 Test Methods for Conducting Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic Materials⁵
- E 150 Practice for Conducting Creep and Creep-Rupture Tension Tests of Metallic Materials Under Conditions of Rapid Heating and Short Times⁶
- E 151 Practice for Tension Tests of Metallic Materials at Elevated Temperatures with Rapid Heating and Conventional or Rapid Strain Rates⁶
- E 292 Test Methods for Conducting Time-for-Rupture Notch Tension Tests of Materials⁵

Copyright © ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States.

¹ This specification is under the jurisdiction of ASTM Committee A01 on Steel, Stainless Steel, and Related Alloys and is the direct responsibility of Subcommittee A01.22 on Steel Forgings and Wrought Fittings for Piping Applications and Bolting Materials for Piping and Special Purpose Applications.

Current edition approved October 10, 2001. Published January 2002. Originally published as A 193 – 36 T. Last previous edition A 193/A 193M – 01a.

² For ASME Boiler and Pressure Vessel Code applications, see related Specification SA-193 in Section II of that Code.

³ Annual Book of ASTM Standards, Vol 01.01.

⁴ Annual Book of ASTM Standards, Vol 01.08.

⁵ Annual Book of ASTM Standards, Vol 03.01.

⁶ Discontinued, see 1983 Annual Book of ASTM Standards, Vol 03.01.

- E 328 Methods for Stress-Relaxation Tests for Materials and Structures⁵
- E 381 Method of Macroetch Testing Steel Bars, Billets, Blooms, and Forgings⁵
- E 566 Practice for Electromagnetic (Eddy-Current) Sorting of Ferrous Metals⁷
- E 709 Guide for Magnetic Particle Examination⁷
- F 606 Test Methods for Determining the Mechanical Properties of Externally and Internally Threaded Fasteners, Washers, and Rivets⁴

2.2 ANSI Standards:⁸

- B1.1 Screw Threads
- B1.13M Metric Screw Threads

B18.2.1 Square and Hex Bolts and Screws

B18.2.3.1M Metric Hex Cap Screws

B18.3 Hexagon Socket and Spline Socket Screws

B18.3.1M Metric Socket Head Cap Screws

2.3 AIAG Standard:⁹

AIAG B-5 02.00 Primary Metals Identification Tag Application Standard

3. General Requirements and Ordering Information

3.1 Material supplied to this material specification shall conform to Specification A 962/A 962M. These requirements outline the testing and retesting methods and procedures, permissible variations in dimensions, and mass, quality and repair of defects, etc.

3.2 It is the purchaser's responsibility to specify in the purchase order all ordering information necessary to purchase the needed material. Examples of such information include, but are not limited to, the ordering information in Specification A 962/A 962M and the following:

3.2.1 Heat-treated condition (that is, normalized and tempered, or quenched and tempered, for the ferritic materials, and carbide solution treated (Class 1), carbide solution treated after finishing (Class 1A), and carbide solution treated and strainhardened (Classes 2, 2B and 2C), for the austenitic stainless steels; Classes 1B and 1C apply to the carbide solution-treated nitrogen-bearing stainless steels; Class 1D applies to material carbide solution treated by cooling rapidly from the rolling temperature),

3.2.2 Description of items required (that is, bars, bolts, screws, or studs),

3.2.3 Nuts, if required by purchaser, in accordance with 13.1,

3.2.4 Supplementary requirements, if any, and

3.2.5 Special requirements, in accordance with 6.3, 6.5.1, 10.2, 14.1, and 15.1.

3.3 If the requirements of this specification are in conflict with the requirements of Specification A 962/A 962M the requirements of this specification shall prevail.

4. Manufacture (Process)

4.1 The steel shall be produced by any of the following processes: open-hearth, basic-oxygen, electric-furnace, or vacuum-induction melting (VIM). The molten steel may be vacuum-treated prior to or during pouring of the ingot or strand casting.

4.2 *Quality*—To ensure soundness, ferritic steel bars and wire shall be tested in accordance with Method E 381, or other suitable method as agreed upon between the purchaser and the producer. When bar or wire is supplied, the bar or wire producer shall perform the test. When fasteners are supplied, either the bar or wire producer or the fastener producer, as agreed upon between them, shall perform the test. Quality control procedures shall be sufficient to demonstrate that the testing was performed and that the results were acceptable. A bar lot consisting of one heat or 10 000 lbs, whichever is smaller, shall be represented by a minimum of one macroetch. Visual examination of transverse sections shall show no imperfections worse than the macrographs of Method E 381 S4-R4-C4 or equivalent as agreed upon. Distinct zones of solidification shall not be present.

5. Discard

5.1 A sufficient discard shall be made to secure freedom from injurious piping and undue segregation.

6. Heat Treatment

6.1 Ferritic steels shall be properly heat treated as best suits the high-temperature characteristics of each grade. Immediately after rolling or forging, the bolting material shall be allowed to cool to a temperature below the cooling transformation range. The materials which are to be furnished in the liquid-quenched condition shall then be uniformly reheated to the proper temperature to refine the grain (a group thus reheated being known as a *quenching charge*) and quenched in a liquid medium under substantially uniform conditions for each quenching charge. Use of water quenching is prohibited for any ferritic grade when heat treatment is part of the fastener manufacturing process. This prohibition does not apply to heat treated bar or to fasteners machined therefrom. Material Grade B16 shall be heated to a temperature range from 1700 to 1750°F [925 to 954°C] and oil quenched. The materials that are to be furnished in the normalized or air-quenched condition shall be reheated to the proper temperature to refine the grain and cooled uniformly in air to a temperature below the transformation temperature range. The material, whether liquid-quenched or normalized, shall then be uniformly reheated for tempering. The minimum tempering temperature shall be as specified in Table 2 and Table 3.

⁷ Annual Book of ASTM Standards, Vol 03.03.

⁸ Available from American National Standards Institute, 11 West 42nd St., 13th Floor, New York, NY 10036.

⁹ Available from Automotive Industry Action Group, 26200 Lahser, Suite 200, Southfield, MI 48034.

🕼 A 193/A 193M

TABLE 1 Chemical Requirements (Composition, percent)^A

Туре						Ferritic Steels					
Grade B5				B5		B6 and B6X					
UNS Designation		5% Chromium			12 % Chromium						
						S 41000 (410)					
		I	Range		Product Variation, Over or Under ^B	Ra	inge	Product Over or I			
Carbon		(0.10 min		0.01 under	0.1	15 max	0.01 ove	r		
Manganese, max			1.00		0.03 over	1.0	00	0.03 ove	r		
Phosphorus, max		(0.040		0.005 over	0.0	040	0.005 ov	er		
Sulfur, max		(0.030		0.005 over	0.0)30	0.005 ov	er		
Silicon		· · · · · · · · · · · · · · · · · · ·	1.00 max		0.05 over	1.0	00 max	0.05 ove	r		
Chromium			4.0-6.0		0.10	11	.5-13.5	0.15			
Molybdenum			0.40-0.65		0.05						
Туре						Ferritic S	teels				
Grade				B7, B7M			B16				
Description			Chror	nium-Molybd	enum ^C	Chromium-Molybdenum-Vanadium			dium		
				2.2	Product Variation,				Variation,		
		I	Range		Over or Under ^B	Range		Over or I	Jnder ^B		
Carbon	0.37-0.49 ^D		2	0.02 0.36-0.47			0.02				
Manganese			0.65-1.10 0.04			0.45-0.70		0.03			
Phosphorus, max			0.035		0.005 over	0.035		0.005 over			
Sulfur, max			0.040		0.005 over	0.040		0.005 ov 0.02	er		
Silicon			0.15-0.35		0.02		0.15-0.35				
Chromium		(0.75-1.20		0.05	0.80-1.15		0.05			
Molybdenum		(0.15-0.25 0.0		0.02	0.50-0.65		0.03			
Vanadium						0.2	25-0.35	0.03			
Aluminum, max % ^E		-					015				
Туре				Au	ustenitic Steels, ^F Clas	ses 1, 1A, 1D,	and 2				
Grade	B	8, B8A		B8C,	B8CA	B8M, B8MA, B8M2, B8M3			B8P, B8PA		
UNS Designation	S 304	00 (304)	S 34700 (347) (347)	347) S 31600 (316)		1111	S 30500		
	Range	Product Variation Over or Under		Range	Product Variation, Over or Under ^B	Range	Product Variation, Over or Under ^B	Range	Product Variatio Over or Under ^B		
Carbon, max	0.08	0.01 over		0.08	0.01 over	0.08	0.01 over	0.12	0.01 over		
Manganese, max	2.00	0.04 over		2.00	0.04 over	2.00	0.04 over	2.00	0.04 over		
Phosphorus, max	0.045	0.010 over		0.045	0.010 over	0.045	0.010 over	0.045	0.010 over		
Sulfur, max	0.030	0.005 over		0.030	0.005 over	0.030	0.005 over	0.030	0.005 over		
Silicon, max	1.00	0.05 over		1.00	0.05 over	1.00	0.05 over	1.00	0.05 over		
Chromium	18.0-20.0	0.20		17.0-19.0	0.20	16.0-18.0	0.20	17.0-19.0	0.20		
Nickel	8.0-11.0	0.15		9.0-12.0	0.15	10.0-14.0	0.15	11.0-13.0	0.15		
Molybdenum						2.00-3.00	0.10		A		
Columbium +				10 x carbon							
tantalum				content, min; 1.10 max							

🕼 A 193/A 193M

UNS Designation S 30451 (304N) S 31651 (316N) S 31254 Range Product Variation, Over or Under [®] Range Carbon, max 0.08 0.01 over 0.08 0.01 over 0.020 Manganese, max 2.00 0.04 over 2.00 0.046 over 0.030 Sulfur, max 0.030 0.005 over 0.030 0.005 over 0.030 Sulfur, max 1.00 0.05 over 1.00 0.05 over 0.030 Chromium 18.0-20.0 0.20 16.018.0 0.20 19.5-20.5 Nickel 8.0-11.0 0.15 17.5-18.2 0.010 6.0-6.5 Nitrogen 0.10-0.16 0.01 0.10-0.16 0.01 0.18-0.22 Copper 0.50-100 0.50-100 Type Austenitic Steels ^F , Classes 1, 1A, and 2 0.045 0.01 0.045 UNS Designation	3MLCuN, B8MLCuNA
Range Product Variation, Over or Under ^a Range Product Variation, Over or Under ^a Range Product Variation, Over or Under ^a Range Carbon, max 0.08 0.01 over 0.08 0.01 over 0.020 Manganese, max 2.00 0.04 over 2.00 0.04 over 0.030 Sulfur, max 0.030 0.005 over 0.033 0.005 over 0.030 Sulfur, max 0.030 0.05 over 0.030 0.05 over 0.880 Chromium 18.0-20.0 0.20 16.0-18.0 0.20 19.5-20.5 Nickel 8.0-11.0 0.15 17.5-18.5 Molybdenum 0.10 6.0-6.0.5 Nitrogen 0.10-0.16 0.01 0.10-0.16 0.01 0.18-0.22 Carbon, max 0.08 0.01 0.030 0.00 0.04 Maydenum 0.050-100 Type 0.01 0.18-0.22 Carbon, max 0.08	
Kange Over or Under ^a Range Over or Under ^a Range Over or Under ^a Carbon, max 0.08 0.01 over 0.08 0.01 over 0.020 Manganese, max 2.00 0.04 over 2.00 0.04 over 1.00 Phosphorus, max 0.030 0.005 over 0.030 0.005 over 0.030 Sulfur, max 0.030 0.005 over 0.030 0.005 over 0.80 Chromium 18.0-20.0 0.20 16.0-18.0 0.20 19.5-20.5 Nickel 8.0-11.0 0.15 17.5-18.5 0.10 6.0-55.5 Nitrogen 0.10-0.16 0.01 0.18-0.22 0.50-1.00 Type 0.50-1.00 Type 0.50-1.00 Type 0.50-1.00 Malphanese, max .	
Manganese, max 2.00 0.04 over 2.00 0.04 over 1.00 Phosphorus, max 0.045 0.010 over 0.045 0.010 over 0.030 Sulfur, max 0.030 0.005 over 0.030 0.005 over 0.80 Sulfur, max 1.00 0.05 over 1.00 0.05 over 0.80 Chromium 18.0-20.0 0.20 16.0-18.0 0.20 19.5-20.5 Nickel 8.0-11.0 0.15 10.0-13.0 0.15 17.5-18.5 Molybdenum 2.00*3.00 0.10 6.0-8.5 Nitrogen 0.10-0.16 0.01 0.10-0.16 0.01 0.18-0.22 Copper 0.50-1.00 Type Marganese, max 0.08 0.01 Varganese, max 0.02 Sulfur, max 0.030	
Phosphorus, max 0.045 0.010 over 0.045 0.010 over 0.030 Sulfur, max 0.030 0.005 over 0.030 0.005 over 0.030 Sulfur, max 1.00 0.05 over 0.030 0.005 over 0.030 Sulfur, max 1.00 0.05 over 0.030 0.005 over 0.80 Chromium 18.0-20.0 0.20 16.0-18.0 0.20 19.5-20.5 Nickel 8.0-11.0 0.15 10.0-13.0 0.15 17.5-18.5 Molybdenum 2.00-3.00 0.10 6.0-65.5 Nitrogen 0.10-0.16 0.01 0.10-0.16 0.01 0.18-0.22 Copper 0.50-1.00 Type 0.50-1.00 0.18-0.22 Carbon, max S 32100 (321) 0.04 Manganese, max 0.04 Phosphorus, max	
Phosphorus, max 0.045 0.010 over 0.045 0.010 over 0.030 Sulfur, max 0.030 0.005 over 0.030 0.005 over 0.030 Sulfur, max 1.00 0.05 over 0.030 0.005 over 0.030 Sulfur, max 1.00 0.05 over 1.00 0.05 over 0.80 Chromium 18.0-20.0 0.20 16.0-18.0 0.20 19.5-20.5 Nickel 8.0-11.0 0.15 10.0-13.0 0.15 17.5-18.5 Molybdenum 2.00-3.00 0.10 6.0-6.5 Nitrogen 0.10-0.16 0.01 0.10-0.16 0.01 0.18-0.22 Copper 0.50-1.00 Type 0.50-1.00 Mustenitic Steels ^F , Classes 1, 1A, and 2 Type S 32100 (321) Phosphorus, max <td></td>	
Sulfur, max 0.030 0.005 over 0.030 0.005 over 0.010 Silicon, max 1.00 0.05 over 1.00 0.05 over 0.80 Chromium 18.0-20.0 0.20 16.0-18.0 0.20 19.5-20.5 Nickel 8.0-11.0 0.15 17.5-18.5 10.0-13.0 0.15 17.5-18.5 Molybdenum 2.00-3.00 0.10 6.0-6.5 Nitrogen 0.10-0.16 0.01 0.10-0.16 0.01 0.18-0.22 Copper 0.50-1.0 1.8-0.01 0.18-0.22 Type 0.01 0.10-0.16 0.01 0.18-0.22 Type 0.02 18.5 0.01 0.02 18.5 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 <td></td>	
Silicon, max 1.00 0.05 over 1.00 0.05 over 0.80 Chromium 18.0-20.0 0.20 16.0-18.0 0.20 19.5-20.5 Nickel 8.0-11.0 0.15 10.0-13.0 0.15 17.5-18.5 Nitrogen 0.10-0.16 0.01 0.10-0.16 0.01 0.18-0.22 Copper 0.50-1.00 0.50-1.00 Fype 0.50-1.00 0.50-1.00 Fype 0.50-1.00 Silicon, max 0.01 0.10-0.16 0.01 0.18-0.22 Carbon, max 0.50-1.00 Vanganese, max 0.08 0.01 0.045 0.00 Vanganese, max 0.08 0.01 0.020 0.04 Sulfur, max 0.030 0.00 0.02 0.05 0.02 0.05 Sulfur, max 0.01 0.20 0.15 0.20 0.15 0.20 0.15 0.20 0.22 0.15 0.22	
Chromium 18.0-20.0 0.20 16.0-18.0 0.20 19.5-20.5 Vickel 8.0-11.0 0.15 10.0-13.0 0.15 17.5-18.5 Molybdenum 2.00-3.00 0.10 6.0-6.5 Vicrogen 0.10-0.16 0.01 0.10-0.16 0.01 0.18-0.22 Copper 0.50-1.00 0.18-0.22 0.01 0.10-0.16 0.01 0.18-0.22 Copper 0.01 0.10-0.16 0.01 0.18-0.22 Stade 0.50-1.00 0.50-1.00 Type 0.50-1.00 0.50-1.00 Type S 32100 (321) S 32100 (321) S 32100 (321) Manganese, max 0.08 0.01 0.045 0.01 Alaganese, max 0.08 0.01 0.020 0.045 Silicon, max 0.030 0.00 0.020 0.045 0.01 Vickel 9.0-12.0	
Nickel 8.0-11.0 0.15 10.0-13.0 0.15 17.5-18.5 Aolybdenum 2.00-3.00 0.10 6.0-6.5 Nitrogen 0.10-0.16 0.01 0.10-0.16 0.01 0.18-0.22 Copper 0.50-1.00 0.50-1.00 Ype 0.50-1.00 0.50-1.00 Ype 0.50-1.00 0.50-1.00 Ype 0.50-1.00 0.50-1.00 Ype 0.50-1.00 0.50-1.00 Ype 0.50-1.00 0.50-1.00	
Molybdenum 2.00-3.00 0.10 6.0-6.5 Nitrogen 0.10-0.16 0.01 0.10-0.16 0.01 0.18-0.22 Sopper 0.50-1.00 0.01 0.18-0.22 ype. Austenitic Steels ^r , Classes 1, 1A, and 2 Strade B8T, B8TA JNS Designation S 32100 (321) S 32100 (321) Range Proc Over 0.08 0.01 Adaganese, max 0.08 0.01 Molybohrus, max 0.030 0.00 Sulfur, max 0.030 0.00 Silicon, max 1.00 0.05 Schredi 9.0-12.0 0.15 Shromium 17.0-19.0 0.22 Strade B8R, B8RA B8S, B Itanium S 20910 S 216	
Nitrogen 0.10-0.16 0.01 0.18-0.22 Copper 0.50-1.00 0.50-1.00 Ype Austenitic Steels ^F , Classes 1, 1A, and 2 B8T, B8TA Strade B8T, B8TA B8T, B8TA JNS Designation S 32100 (321) Range Proc Carbon, max 0.08 0.01 Austenitic Steels ^F , Classes 1, 1A, and 2 S 32100 (321) Carbon, max 0.08 0.01 Alustenitic Steels ^F , Classes 1, 1A, and 2 S 32100 (321) Carbon, max 0.08 0.01 Alustenitic Steels ^F , Classes 1, 1A, and 2 S 32100 (321) Carbon, max 0.08 0.01 Alustenitic Steels ^F , Classes 1, 1A, and 2 S 32100 (321) Chosphorus, max 0.08 0.01 Julfur, max 0.030 0.00 Silicon, max 0.030 0.00 Silicon, max 1.00 0.02 Shore 5 x (C + N) min, 0.70 max 0.05 Steels ^F , Classes 1C and 1D 5 x 10 S 218 Systemation	
Copper 0.50-1.00 ype. Austenitic Steels ^F , Classes 1, 1A, and 2 Strade B8T, B8TA JNS Designation S 32100 (321) Range Proc. Carbon, max 0.08 0.01 Austenitic Steels ^F , Classes 1, 1A, and 2 S 32100 (321) Proc. Carbon, max 0.08 0.01 Anganese, max 0.08 0.01 Phosphorus, max 0.045 0.01 Silfur, max 0.030 0.00 Silfur, max 0.030 0.02 Sinckel 9.0-12.0 0.15 Shromium 17.0-19.0 0.22 Tanama 5 x (C + N) min, 0.70 max 0.05 Strade B8R, B8RA B8S, E INS Designation \$ 20910 \$ 218	
Type. Austenitic Steels ^F , Classes 1, 1A, and 2 Grade B8T, B8TA JNS Designation S 32100 (321) Range Proc Ove 0.08 Manganese, max 0.08 Phosphorus, max 0.045 Sulfur, max 0.030 Sulfur, max 0.030 Sulfur, max 0.030 Sulfur, max 0.012,0 Stilicon, max 0.030 Vickel 9.0-12.0 Chromium 17.0-19.0 Tranum 5 x (C + N) min, 0.70 max Oype Austenitic Steels ^F , Classes 1C and 1D Grade B8R, B8RA B8S, E B8S, E JNS Designation \$ 20910	
Barade BBT, BBTA Sarade S 32100 (321) INS Designation S 32100 (321) Range Proc Ove Carbon, max 0.08 0.01 Manganese, max 2.00 0.04 Phosphorus, max 0.030 0.00 Sulfur, max 0.030 0.00 Silicon, max 0.030 0.00 Uckel 9.0-12.0 0.15 Chromium 17.0-19.0 0.20 Tranum 5 x (C + N) min, 0.70 max 0.05 Sype Austenitic Steels ^F , Classes 1C and 1D Strade B8R, B8RA B8S, B NS Designation S 20910 S 218	
INS Designation S 32100 (321) Range Proc Over Carbon, max 0.08 0.01 Anganese, max 2.00 0.04 Phosphorus, max 0.045 0.01 Sulfur, max 0.030 0.00 Sulfur, max 0.030 0.00 Sulfur, max 0.030 0.00 Lickel 9.0-12.0 0.15 Chromium 17.0-19.0 0.20 Tranum 5 x (C + N) min, 0.70 max 0.05 Sype Austenitic Steels ^F , Classes 1C and 1D 0.05 Strade B8R, B8RA B8S, B INS Designation \$ 20910 \$ 218	2
Range Proc Over Carbon, max Manganese, max 0.08 0.01 Phosphorus, max 2.00 0.04 Sulfur, max 0.045 0.01 Sulfur, max 0.030 0.00 Sulfur, max 0.030 0.00 Sulfur, max 0.030 0.00 Sulfur, max 0.01 0.05 Sulfur, max 0.030 0.00 Sulfur, max 0.030 0.00 Sulfur, max 0.01 0.05 Sulfur, max 0.030 0.00 Sulfur, max 0.030 0.00 Sulfur, max 0.01 0.05 Sulfur, max 0.01 0.05 Sulfur, max 0.020 0.15 Chromium 17.0-19.0 0.20 Type Austenitic Steels ^F , Classes 1C and 1D Grade B8R, B8RA B8S, B JNS Designation \$ 20910 \$ 218	
Range Ove Carbon, max 0.08 0.01 Manganese, max 2.00 0.04 Phosphorus, max 0.045 0.01 Sulfur, max 0.030 0.00 Silicon, max 9.0-12.0 0.05 Vickel 9.0-12.0 0.15 Orremum 17.0-19.0 0.22 Tranium 5 x (C + N) min, 0.70 max 0.05 Spec Austenitic Steels ^F , Classes 1C and 1D 0.05 Strade B8R, B8RA B8S, B JNS Designation \$ 20910 \$ 218	
Manganese, max 2.00 0.04 Phosphorus, max 0.045 0.01 Sulfur, max 0.030 0.00 Silicon, max 1.00 0.05 Nickel 9.0-12.0 0.15 Chromium 17.0-19.0 0.20 Titanium 5 x (C + N) min, 0.70 max 0.05 Type Austenitic Steels ^F , Classes 1C and 1D 0.05 Grade B8R, B8RA B8S, B JNS Designation \$ 20910 \$ 218	luct Variation, r or Under ^{<i>B</i>}
Phosphorus, max 0.045 0.01 Sulfur, max 0.030 0.00 Silicon, max 1.00 0.05 Nickel 9.0-12.0 0.15 Chromium 17.0-19.0 0.22 Titanium 5 x (C + N) min, 0.70 max 0.05 Fype Austenitic Steels ^F , Classes 1C and 1D 0.05 Grade B8R, B8RA B8S, B JNS Designation \$ 20910 \$ 218	over
Sulfur, max 0.030 0.00 Silicon, max 1.00 0.05 Nickel 9.0-12.0 0.15 Chromium 17.0-19.0 0.22 Citanium 5 x (C + N) min, 0.70 max 0.05 Type Austenitic Steels ^F , Classes 1C and 1D 0.22 Grade B8R, B8RA B8S, B JNS Designation \$ 20910 \$ 218	over
Silicon, max 1.00 0.05 lickel 9.0-12.0 0.15 Chromium 17.0-19.0 0.20 itanium 5 x (C + N) min, 0.70 max 0.05 type Austenitic Steels ^F , Classes 1C and 1D 0.21 Grade B8R, B8RA B8S, B INS Designation \$ 20910 \$ 218	0 over
Lickel 9.0-12.0 0.15 Chromium 17.0-19.0 0.20 Tranium 5 x (C + N) min, 0.70 max 0.05 Type Austenitic Steels ^F , Classes 1C and 1D B8S, B Srade B8R, B8RA B8S, B INS Designation S 20910 S 218	5 over
Lickel 9.0-12.0 0.15 Chromium 17.0-19.0 0.20 Tranium 5 x (C + N) min, 0.70 max 0.05 Type Austenitic Steels ^F , Classes 1C and 1D B8S, B Srade B8R, B8RA B8S, B INS Designation S 20910 S 218	over
Chromium 17.0-19.0 0.20 Titanium 5 x (C + N) min, 0.70 max 0.05 Type Austenitic Steels ^F , Classes 1C and 1D 0.05 Grade B8R, B8RA B8S, B INS Designation \$ 20910 \$ 218	
Titanium 5 x (C + N) min, 0.70 max 0.05 Type Austenitic Steels ^F , Classes 1C and 1D B88, B8RA B88, B88, B88, B88, B88, B88, B88, B88,	
Barade B8R, B8RA B8S, B JNS Designation S 20910 S 218	under
JNS Designation S 20910 S 218	
	8SA
Product Variation D	00
	oduct Variation, ver or Under ⁸
Carbon, max 0.06 0.01 over 0.10 0.	0 <mark>1 ove</mark> r
ů – Elektrik	06
hosphorus, max 0.045 0.005 over 0.060 0.	005 over
ulfur, max 0.030 0.005 over 0.030 0.	005 over
	15
	20
	10
lolybdenum 1.50-3.00 0.10	
litrogen 0.20-0.40 0.02 0.08-0.18 0.	
anadium 0.10-0.30 0.05	
	Nº.
Type Austenitic Steels ^F , Classes 1, 1A and 1D	
Grade B8LN, B8LNA B8MLN, B	
	oduct Variation, ver or Under ^B
Over or Under ^B Cover or Under ^B Over or Under ^B Cover or Under	Ver of Under

	-	Over or Under-		Over or Under-	
Carbon, max	0.030	0.005 over	0.030	0.005 over	
Manganese	2.00	0.04 over	2.00	0.04 over	
Phosphorus, max	0.045	0.010 over	0.045	0.010 over	
Sulfur, max	0.030	0.005 over	0.030	0.005 over	
Silicon	1.00	0.05 over	1.00	0.05 over	
Chromium	18.0-20.0	0.20	16.0-18.0	0.20	
Nickel	8.0-11.0	0.15	10.0-13.0	0.15	
Molybdenum			2.00-3.00	0.10	
Nitrogen	0.10-0.16	0.01	0.10-0.16	0.01	

^A The intentional addition of Bi, Se, Te, and Pb is not permitted.

^B Product analysis—Individual determinations sometimes vary from the specified limits on ranges as shown in the tables. The several determinations of any individual element in a heat may not vary both above and below the specified range. ^C Typical steel compositions used for this grade include 4140, 4142, 4145, 4140H, 4142H, and 4145H. ^D For bar sizes over 3½ in. [90 mm], inclusive, the carbon content may be 0.50 %, max. For the B7M grade, a minimum carbon content of 0.28 % is permitted, provided

that the required tensile properties are met in the section sizes involved; the use of AISI 4130 or 4130H is allowed.

^E Total of soluble and insoluble.

🕼 A 193/A 193M

^F Classes 1 and 1D are solution treated. Classes 1, 1B, and some 1C (B8R and B8S) products are made from solution treated material. Class 1A (B8A, B8CA, B8MA, B8PA, B8TA, B8LNA, B8MLNA, B8NA, and B8MNA) and some Class 1C (B9RA and B8SA) products are solution treated in the finished condition. Class 2 products are solution treated and strain hardened.

Grade	Diameter, in.	Minimum Tempering Temperature, °F	Tensile Strength, min, ksi	Yield Strength, min, 0.2 % offset, ksi	Elongati in 4D min, %	,	rea, max
		Ferritic Stee	els				
B5							
to 6 % chromium B6	up to 4, incl	1100	100	80	16	50	
3 % chromium B6X	up to 4, incl	1100	110	85	15	50	
3 % chromium B7	up to 4, incl	1100	90	70	16	50	26 HRC
Chromium-molybdenum	21/2 and under	1100	125	105	16	50	321 HB or 35 HRC
	over 21/2 to 4	1100	115	95	16	50	321 HB or
	over 4 to 7	1100	100	75	18	50	35 HRC 321 HB or 35 HRC
B7M ⁴ Chromium-molybdenun	n 4 and under	1150	100	80	18	50	235 HB or
	over 4 to 7	1150	100	75	18	50	99 HRB 235 BHN or 99 HRB
B16 Chromium <mark>-m</mark> olybdenum-vanadium	21/2 and under	1200	125	105	18	50	321 HB or 35 HRC
	over 21/2 to 4	1200	110	95	17	45	321 HB or
	over 4 to 8	1200	100	85	16	45	35 HRC 321 HB or 35 HRC
			Strongth	Yield	Elongation	Poduction	
Grade, Diameter, in.	Heat Treatment ^B		Strength, min, ksi	Strength, min, 0.2 % offset, ksi	Elongation in 4 D, min %	Reduction of Area, min %	Hardness, max
Grade, Diameter, in.	Heat Treatment ^B		min, ksi	Strength, min, 0.2 % offset,	in 4 D,	of Area,	
Classes 1 and 1D; B8, B8M, B8P, I8LN,			min, ksi	Strength, min, 0.2 % offset,	in 4 D,	of Area, min %	
lasses 1 and 1D; B8, B8M, B8P, 8LN, B8MLN, all diameters			min, ksi eels	Strength, min, 0.2 % offset, ksi	in 4 D, min %	of Area, min %	max 223 HB ^C or 96 HF
Classes 1 and 1D; B8, B8M, B8P, 8LN, B8MLN, all diameters Class 1: B8C, B8T, all diameters Class 1A: B8A, B8CA, B8MA, 8PA, B8TA, B8LNA, B8MLNA,	carbide solution treated		min, ksi eels 75	Strength, min, 0.2 % offset, ksi 30	in 4 D, min %	of Area, min %	max 223 HB ^C or 96 HF 223 HB ^C or 96HR
lasses 1 and 1D; B8, B8M, B8P, 8LN, B8MLN, all diameters lass 1: B8C, B8T, all diameters lass 1A: B8A, B8CA, B8MA, 8PA, B8TA, B8LNA, B8MLNA, 8NA, B8MNA	carbide solution treated carbide solution treated carbide solution treated in the finished		min, ksi æels 75 75	Strength, min, 0.2 % offset, ksi 30 30	in 4 D, min % 30 30	of Area, min % 50 50	max
Classes 1 and 1D; B8, B8M, B8P, B8N, B8MLN, all diameters Class 1: B8C, B8T, all diameters Class 1A: B8A, B8CA, B8MA, 8PA, B8TA, B8LNA, B8MLNA, 8NA, B8MNA 8MLCuNA, all diameters Classes 1B and 1D: B8N, B8MN, nd	carbide solution treated carbide solution treated carbide solution treated in the finished condition		min, ksi æels 75 75	Strength, min, 0.2 % offset, ksi 30 30	in 4 D, min % 30 30	of Area, min % 50 50	max 223 HB ^C or 96 HF 223 HB ^C or 96HR
lasses 1 and 1D; B8, B8M, B8P, 8LN, B8MLN, all diameters lass 1: B8C, B8T, all diameters lass 1A: B8A, B8CA, B8MA, 8PA, B8TA, B8LNA, B8MLNA, 8NA, B8MNA 8MLCuNA, all diameters lasses 1B and 1D: B8N, B8MN, nd B8MLCuN, all diameters lasses 1C and 1D: B8R, all	carbide solution treated carbide solution treated carbide solution treated in the finished condition		min, ksi eels 75 75 75 75	Strength, min, 0.2 % offset, ksi 30 30 30 30	in 4 D, min % 30 30 30	of Area, min % 50 50 50	max 223 HB ^C or 96 HF 223 HB ^C or 96 HF 192 HB or 90 HR 223 HB ^C or 96 HF
lasses 1 and 1D; B8, B8M, B8P, 8LN, B8MLN, all diameters lass 1: B8C, B8T, all diameters lass 1A: B8A, B8CA, B8MA, 8PA, B8TA, B8LNA, B8MLNA, 8NA, B8MA 8MLCUNA, all diameters lasses 1B and 1D: B8N, B8MN, nd B8MLCUN, all diameters lasses 1C and 1D: B8R, all iameters	carbide solution treated carbide solution treated carbide solution treated in the finished condition		min, ksi 2015 75 75 75 80	Strength, min, 0.2 % offset, ksi 30 30 30 30 30 30 35	in 4 D, min % 30 30 30 30 30	of Area, min % 50 50 50 50 40	max 223 HB ^C or 96 HF 223 HB ^C or 96HR 192 HB or 90 HR
lasses 1 and 1D; B8, B8M, B8P, 8LN, B8MLN, all diameters lass 1: B8C, B8T, all diameters lass 1A: B8A, B8CA, B8MA, 8PA, B8TA, B8LNA, B8MLNA, 8MLCuNA, all diameters lasses 1B and 1D: B8N, B8MN, nd B8MLCuN, all diameters lasses 1C and 1D: B8R, all ameters lasses 1C and 1D: B8S, all	carbide solution treated carbide solution treated carbide solution treated in the finished condition carbide solution treated carbide solution treated carbide solution treated in the finished		min, ksi 2005 75 75 75 80 100	Strength, min, 0.2 % offset, ksi 30 30 30 30 35 55	in 4 D, min % 30 30 30 30 30 30 30	of Area, min % 50 50 50 50 40 55	max 223 HB ^C or 96 HF 223 HB ^C or 96HR 192 HB or 90 HR 223 HB ^C or 96 HF 271 HB or 28 HR
lasses 1 and 1D; B8, B8M, B8P, 8LN, B8MLN, all diameters lass 1: B8C, B8T, all diameters lass 1A: B8A, B8CA, B8MA, 8PA, B8TA, B8LNA, B8MLNA, 8NA, B8MNA 8MLCuNA, all diameters lasses 1B and 1D: B8N, B8MN, nd B8MLCuN, all diameters lasses 1C and 1D: B8R, all iameters lasses 1C and 1D: B8S, all iameters	carbide solution treated carbide solution treated carbide solution treated in the finished condition carbide solution treated carbide solution treated carbide solution treated		min, ksi 2005 75 75 75 80 100 100	Strength, min, 0.2 % offset, ksi 30 30 30 30 35 55 55 55	in 4 D, min % 30 30 30 30 30 30 35 35	of Area, min % 50 50 50 50 40 55 55	max 223 HB ^C or 96 HF 223 HB ^C or 96 HF 192 HB or 90 HR 223 HB ^C or 96 HF 271 HB or 28 HR 271 HB or 28 HR
lasses 1 and 1D; B8, B8M, B8P, 8LN, B8MLN, all diameters lass 1: B8C, B8T, all diameters lass 1A: B8A, B8CA, B8MA, 8PA, B8TA, B8LNA, B8MLNA, 8NA, B8MNA 8MLCuNA, all diameters lasses 1B and 1D: B8N, B8MN, nd B8MLCuN, all diameters lasses 1C and 1D: B8R, all ameters lasses 1C and 1D: B8S, all ameters lasses 1C and 1D: B8S, all ameters lasses 1C: B8RA, all diameters lasses 1C: B8RA, all diameters lasses 1C: B8SA, all diameters lass 2: B8, B8C, B8P, B8T, and 8N, ⁰	carbide solution treated carbide solution treated carbide solution treated in the finished condition carbide solution treated carbide solution treated carbide solution treated in the finished condition carbide solution treated in the finished		min, ksi eels 75 75 75 80 100 100 95	Strength, min, 0.2 % offset, ksi 30 30 30 30 35 55 55 55 55	in 4 D, min % 30 30 30 30 30 30 35 35 35	of Area, min % 50 50 50 50 40 55 55 55	max 223 HB ^C or 96 HF 223 HB ^C or 96 HF 192 HB or 90 HR 223 HB ^C or 96 HF 271 HB or 28 HR 271 HB or 28 HR
lasses 1 and 1D; B8, B8M, B8P, BLN, B8MLN, all diameters lass 1: B8C, B8T, all diameters lass 1A: B8A, B8CA, B8MA, BPA, B8TA, B8LNA, B8MLNA, 8NA, B8MNA 8MLCuNA, all diameters lasses 1B and 1D: B8N, B8MN, nd B8MLCuN, all diameters lasses 1C and 1D: B8R, all ameters lasses 1C and 1D: B8S, all ameters lasses 1C and 1D: B8S, all ameters lasses 1C: B8RA, all diameters lasses 1C: B8RA, all diameters lasses 1C: B8SA, all diameters lass 2: B8, B8C, B8P, B8T, and 8N, ⁰	carbide solution treated carbide solution treated carbide solution treated in the finished condition carbide solution treated carbide solution treated carbide solution treated in the finished condition carbide solution treated in the finished condition carbide solution treated in the finished condition carbide solution treated and strain		min, ksi 2015 75 75 75 75 80 100 100 95 95	Strength, min, 0.2 % offset, ksi 30 30 30 30 30 30 35 55 55 55 55 55 55 55 50 50 50	in 4 D, min % 30 30 30 30 30 30 30 35 35 35 35 35	of Area, min % 50 50 50 50 40 55 55 55 55	max 223 HB ^c or 96 Hf 223 HB ^c or 96HF 192 HB or 90 HR 223 HB ^c or 96 Hf 271 HB or 28 HR 271 HB or 28 HR 271 HB or 28 HR 271 HB or 28 HR 271 HB or 28 HR
lasses 1 and 1D; B8, B8M, B8P, 8LN, B8MLN, all diameters lass 1: B8C, B8T, all diameters lass 1A: B8A, B8CA, B8MA, 8PA, B8TA, B8LNA, B8MLNA, 8NA, B8MNA 8MLCuNA, all diameters lasses 1B and 1D: B8N, B8MN, ad B8MLCuN, all diameters lasses 1C and 1D: B8R, all ameters lasses 1C and 1D: B8R, all ameters lasses 1C and 1D: B8S, all ameters lasses 1C and 1D: B8S, all ameters lasses 1C and 1D: B8S, all ameters lasses 1C: B8SA, all diameters lasses 1C: B8SA, all diameters lasses 2: B8, B8C, B8P, B8T, and 8N, ^D and under over ¾ to 1, incl over 1 to 1¼, incl	carbide solution treated carbide solution treated carbide solution treated in the finished condition carbide solution treated carbide solution treated carbide solution treated in the finished condition carbide solution treated in the finished condition carbide solution treated in the finished condition carbide solution treated and strain		min, ksi eels 75 75 75 80 100 100 100 95 95 125 115 105	Strength, min, 0.2 % offset, ksi 30 30 30 30 30 30 30 30 30 30 30 30 30	in 4 D, min % 30 30 30 30 30 30 35 35 35 35 35 35 12 15 20	of Area, min % 50 50 50 50 40 55 55 55 55 55 55 35 35	max 223 HB ^C or 96 HI 223 HB ^C or 96HF 192 HB or 90 HF 223 HB ^C or 96 HI 223 HB ^C or 96 HI 271 HB or 28 HF 271 HB or 28 HF 271 HB or 28 HF 271 HB or 28 HF 321 HB or 35 HF 321 HB or 35 HF
Classes 1 and 1D; B8, B8M, B8P, 8LN, B8MLN, all diameters class 1: B8C, B8T, all diameters class 1A: B8A, B8CA, B8MA, 8PA, B8TA, B8LNA, B8MLNA, 8NA, B8MNA 8MLCuNA, all diameters classes 1B and 1D: B8N, B8MN, nd B8MLCuN, all diameters classes 1C and 1D: B8R, all iameters classes 1C and 1D: B8S, all iameters classes 1C and 1D: B8S, all iameters classes 1C: B8RA, all diameters classes 1C: B8RA, all diameters classes 1C: B8RA, all diameters classes 1C: B8RA, all diameters classes 1C: B8RA, all diameters class 2: B8, B8C, B8P, B8T, and 8N, ^D 4 and under over 3/4 to 1, incl over 1 t/4, incl over 1 t/4, incl	carbide solution treated carbide solution treated carbide solution treated in the finished condition carbide solution treated carbide solution treated carbide solution treated in the finished condition carbide solution treated in the finished condition carbide solution treated in the finished condition carbide solution treated and strain		min, ksi eels 75 75 75 80 100 100 100 95 95 125 115	Strength, min, 0.2 % offset, ksi 30 30 30 30 30 35 55 55 55 55 55 50 50 50 100 80	in 4 D, min % 30 30 30 30 30 30 35 35 35 35 35 35 12 15	of Area, min % 50 50 50 50 40 55 55 55 55 55 35 35	max 223 HB ^C or 96 HF 223 HB ^C or 96HF 192 HB or 90 HR 223 HB ^C or 96 HF 221 HB or 28 HR 271 HB or 28 HR 271 HB or 28 HR

A 193/A 193M

	TABLE	2 Continued				
Grade, Diameter, in.	Heat Treatment ^B	Tensile Strength, min, ksi	Yield Strength, min, 0.2 % offset, ksi	Elongation in 4 D, min %	Reduction of Area, min %	Hardness, max
	Aus	tenitic Steels				
Over 1 to 11/4, incl		95	65	25	45	321 HB or 35 HRC
over 11/4 to 11/2, incl		90	50	30	45	321 HB or 35 HRC
Class 2B: B8, B8M2 ^D 2 and under	carbide solution treated and strain hardened	95	75	25	40	321 HB or 35 HRC
over 2 to 21/2 incl		90	65	30	40	321 HB or 35 HRC
over 21/2 to 3 incl		80	55	30	40	321 HB or 35 HRC
Class 2C: B8M3 ^D 2 and under	carbide solution treated and strain hardened	85	65	30	60	321 HB or 35 HRC
over 2		85	60	30	60	321 HB or 35 HRC

^A To meet the tensile requirements, the Brinell hardness shall be over 200 HB (93 HRB).

^B Class 1 is solution treated. Class 1A is solution treated in the finished condition for corrosion resistance; heat treatment is critical due to physical property requirement. Class 2 is solution treated and strain hardened. Austenitic steels in the strain-hardened condition may not show uniform properties throughout the section particularly in sizes over 3/4 in. in diameter

^C For sizes ³/₄ in. in diameter and smaller, a maximum hardness of 241 HB (100 HRB) is permitted. ^D For diameters 1¹/₂ and over, center (core) properties may be lower than indicated by test reports which are based on values determined at ¹/₂ radius.

TABLE 3	Mechanical	Requirements	—Metric Products
---------	------------	--------------	------------------

Class		Minimum Tempering emperature, °C	Tensile Strength, min, MPa	Yield Strength, min, 0.2 % offset, MPa	Elongati in 4D, min, %	on Redu of A min	
		Ferritic Stee	els				
B5 4 to 6 % chromium B6	up to M100, incl	593	690	550	16	50	
13 % chromium B6X	up to M100, incl	593	760	585	15	50	
13 % chromium B7	up to M100, incl	593	620	485	16	50	26 HRC
Chromium-molybdenum	M64 and under	593	860	720	16	50	321 HB or 35 HRC
	over M64 to M100	593	795	655	16	50	321 HB or 35 HRC
	over M100 to M180	593	690	515	18	50	321 HB or 35 HRC
B7M ⁴ Chromium-molybdenum	M100 and under	620	690	550	18	50	235 HB or 99 HRB
	over M100 to M180	620	690	515	18	50	235 BHN or 99 HRB
B16 Chromium-molybdenum-vanadium	M64 and under	650	860	725	18	50	321 HB or 35 HRC
	over M64 to M100	650	760	655	17	45	321 HB or 35 HRC
	over M100 to M180	650	690	586	16	45	321 HB or 35 HRC
Class Diameter, mm	Heat Treatment ^B		Tensile Strength, min, MPa	Yield Strength, min, 0.2 % offset, MPa	Elongation F in 4 D, min %	Reduction of Area, min %	Hardness, max
	ŀ	Austenitic Ste	eels				
Classes 1 and 1D; B8, B8M, B8P, B B8MLN, all diameters	8LN, carbide solution treated		515	205	30	50	223 HB ^C or 96 HRB
Class 1: B8C, B8T, all diameters	carbide solution tre <mark>ated</mark>		515	205	30	50	223 HB ^C or 96HRB
Class 1A: B8A, B8CA, B8MA, B8PA B8TA, B8LNA, B8MLNA, B8NA, B8N B8MLCuNA, all diameters		shed	515	205	30	50	192 HB or 90 HRB
Classes 1B and 1D: B8N, B8MN, an B8MLCuN, all diameters	d carbide solution treated		550	240	30	40	223 HB ^C or 96 HRB
Classes 1C and 1D: B8R, all diamet	ers carbide solution treated		690	380	35	55	271 HB or 28 HRC

🖽 A 193/A 193M

 TABLE 3
 Continued

Class Diameter, mm	Heat Treatment ^B	Tensile Strength, min, MPa	Yield Strength, min, 0.2 % offset, MPa	Elongation in 4 D, min %	Reduction of Area, min %	Hardness, max
	Austenitic	Steels				
Class 1C: B8RA, all diameters	carbide solution treated in the finished condition	690	380	35	55	271 HB or 28 HRC
Classes 1C and 1D: B8S, all diameters	carbide solution treated	655	345	35	55	271 HB or 28 HRC
Classes 1C: B8SA, all diameters	carbide solution treated in the finished condition	655	345	35	55	271 HB or 28 HRC
Class 2: B8, B8C, B8P, B8T, and B8N, D M20 and under	carbide solution treated and strain	860	690	12	35	321 HB or 35 HRC
over M20 to M24, incl		795	550	15	35	321 HB or 35 HRC
over M24 to M30, incl		725	450	20	35	321 HB or 35 HRC
over M30 to M36, incl		690	345	28	45	321 HB or 35 HRC
Class 2: B8M, B8MN, B8MLCuN, ^D M20 and under	carbide solution treated and strain hardened	760	665	15	45	321 HB or 35 HRC
over M20 to M24, incl		690	550	20	45	321 HB or 35 HRC
over M24 to M30, incl		655	450	25	45	321 HB or 35 HRC
over M30 to M36, incl		620	345	30	45	321 HB or 35 HRC
Class 2B: B8, B8 <mark>M2,^D</mark> M48 and under	carbide solution treated and strain hardened	655	515	25	40	321 HB or 35 HRC
over M4 <mark>8 to M64</mark> , incl		620	450	30	40	321 HB or 35 HRC
over M <mark>64 to M</mark> 72, incl		550	380	30	40	321 HB or 35 HRC
Class 2C <mark>: B8M</mark> 3, ^{<i>D</i>} M48 and under	carbide solution treated and strain hardened	585	450	30	60	321 HB or 35 HRC
over M48		585	415	30	60	321 HB or 35 HRC

^A To meet the tensile requirements, the Brinell hardness shall be over 200 HB (93 HRB).

^B Class 1 is solution treated. Class 1A is solution treated in the finished condition for corrosion resistance; heat treatment is critical due to physical property requirement. Class 2 is solution treated and strain hardened. Austenitic steels in the strain-hardened condition may not show uniform properties throughout the section particularly in sizes over M20 mm in diameter

^C For sizes M20 mm in diameter and smaller, a maximum hardness of 241 HB (100 HRB) is permitted.

^D For diameters M38 and over, center (core) properties may be lower than indicated by test reports which are based on values determined at ½ radius.

6.1.1 Quenched and tempered or normalized and tempered ferritic material that is subsequently cold drawn for dimensional control shall be stress-relieved after cold drawing. The minimum stress-relief temperature shall be 100° F [55°C] below the tempering temperature. Tests for mechanical properties shall be performed after stress relieving.

6.2 Both B6 and B6X materials shall be held, at the tempering temperature for a minimum time of 1 h. Identification Symbol B 6X material may be furnished in the as-rolledand-tempered condition. Cold working is permitted with the hardness limitation (26 HRC maximum) of Table 2 for the B 6X grade.

6.3 All austenitic stainless steels shall receive a carbide solution treatment (see 6.3.1-6.3.4 for specific requirements for each class). Classes 1, 1B, 1C (Grades B8R and B8S only), 2, 2B, and 2C can apply to bar, wire, and finished fasteners. Class 1A (all grades) and Class 1C (grades B8RA and B8SA only) can apply to finished fasteners. Class 1D applies only to bar and wire and finished fasteners that are machined directly from Class 1D bar or wire without any subsequent hot or cold working.

6.3.1 Classes 1 and 1B, and Class 1C Grades B8R and B8S—After rolling of the bar, forging, or heading, whether done hot or cold, the material shall be heated from ambient temperature and held a sufficient time at a temperature at which the chromium carbide will go into solution and then shall be cooled at a rate sufficient to prevent the precipitation of the carbide.

6.3.2 *Class 1D*—Rolled or forged Grades B8, B8M, B8P, B8LN, B8MLN, B8N, B8MN, B8R, and B8S bar shall be cooled rapidly immediately following hot working while the temperature is above 1750°F [955°C] so that grain boundary carbides are in solution. Class 1D shall be restricted to applications at temperatures less than 850°F [455°C].

6.3.3 Class 1A and Class 1C Grades B8RA and B8SA— Finished fasteners shall be carbide solution treated after all rolling, forging, heading, and threading operations are complete. This designation does not apply to starting material such as bar. Fasteners shall be heated from ambient temperature and held a sufficient time at a temperature at which the chromium carbide will go into solution and then shall be cooled at a rate sufficient to prevent the precipitation of the carbide.

6.3.4 Classes 2, 2B, and 2C—Material shall be carbide solution treated by heating from ambient temperature and holding a sufficient time at a temperature at which the chromium carbide will go into solution and then cooling at a rate sufficient to prevent the precipitation of the carbide. Following this treatment the material shall then be strain hardened to achieve the required properties.

NOTE 4—Heat treatment following operations performed on a limited portion of the product, such as heading, may result in non-uniform grain size and mechanical properties through the section affected.

6.4 If scale-free bright finish is required, this shall be specified in the purchase order.

6.5 B7 and B7M bolting material shall be heat treated by

quenching in a liquid medium and tempering. For B7M bolting, the final heat treatment, which may be the tempering operation if conducted at 1150°F [620°C] minimum, shall be done after all machining and forming operations, including thread rolling and any type of cutting.

6.5.1 Unless otherwise specified, material for Grade B7 may be heat treated by the Furnace, the Induction or the Electrical Resistance method.

NOTE 5—It should be taken into consideration that stress-relaxation properties may vary from heat lot to heat lot or these properties may vary from one heat treating method to another. The purchaser may specify Supplementary Requirement S8, if stress-relaxation testing is desired.

7. Chemical Composition

7.1 Each alloy shall conform to the chemical composition requirements prescribed in Table 1.

7.2 The steel shall not contain an unspecified element for the ordered grade to the extent that the steel conforms to the requirements of another grade for which that element is a specified element. Furthermore, elements present in concentrations greater than 0.75 weight/% shall be reported.

8. Heat Analysis

8.1 An analysis of each heat of steel shall be made by the manufacturer to determine the percentages of the elements specified in Section 7. The chemical composition thus determined shall be reported to the purchaser or the purchaser's representative, and shall conform to the requirements specified in Section 7. Should the purchaser deem it necessary to have the transition zone of two heats sequentially cast discarded, the purchaser shall invoke Supplementary Requirement S3 of Specification A 788.

9. Mechanical Properties

9.1 Tensile Properties:

9.1.1 *Requirements*—The material as represented by the tension specimens shall conform to the requirements prescribed in Table 2 at room temperature after heat treatment.

9.1.2 *Full Size Fasteners, Wedge Tensile Testing*—When applicable, see 12.1.3, headed fasteners shall be wedge tested full size and shall conform to the tensile strength shown in Table 2. The minimum full size breaking strength (lbf) for individual sizes shall be as follows:

$$Ts = UTS \times As \tag{1}$$

where:

Ts = wedge tensile strength,

UTS = tensile strength specified in Table 2, and

As = stress area, square inches, as shown in ANSI B1.1 or calculated as follows:

 $As = 0.785 (D - (0.974/n))^2$

where:

D = nominal thread size, and

n = the number of threads per inch.

9.2 Hardness Requirements:

9.2.1 The hardness shall conform to the requirements prescribed in Table 2. Hardness testing shall be performed in accordance with either Specification A 962/A 962M or with Test Methods F 606.

9.2.2 Grade B7M—The maximum hardness of the grade shall be 235 HB or 99 HRB. The minimum hardness shall not be less than 200 HB or 93 HRB. Conformance to this hardness shall be ensured by testing the hardness of each stud or bolt by Brinell or Rockwell B methods in accordance with 9.2.1. The use of 100 % electromagnetic testing for hardness as an alternative to 100 % indentation hardness testing is permissible when qualified by sampling using indentation hardness testing. Each lot tested for hardness electromagnetically shall be 100 % examined in accordance with Practice E 566. Following electromagnetic testing for hardness a random sample of a minimum of 100 pieces of each heat of steel in each lot (as defined in 12.1.1) shall be tested by indentation hardness methods. All samples must meet hardness requirements to permit acceptance of the lot. If any one sample is outside of the specified maximum or minimum hardness, the lot shall be rejected and either reprocessed and resampled or tested 100 % by indentation hardness methods. Product that has been 100 % tested and found acceptable shall have a line under the grade symbol.

9.2.2.1 Surface preparation for indentation hardness testing shall be in accordance with Test Methods E 18. Hardness tests shall be performed on the end of the bolt or stud. When this is impractical, the hardness test shall be performed elsewhere.

10. Workmanship, Finish, and Appearance

10.1 Bolts, screws, studs, and stud bolts shall be pointed and shall have a workmanlike finish. Points shall be flat and chamfered or rounded at option of the manufacturer. Length of point on studs and stud bolts shall be not less than one nor more than two complete threads as measured from the extreme end parallel to the axis. Length of studs and stud bolts shall be measured from first thread to first thread.

10.2 Bolt heads shall be in accordance with the dimensions of ANSI B18.2.1 or ANSI B18.2.3.1M. Unless otherwise specified in the purchase order, the Heavy Hex Screws Series should be used, except the maximum body diameter and radius of fillet may be the same as for the Heavy Hex Bolt Series. The body diameter and head fillet radius for sizes of Heavy Hex Cap Screws and Bolts that are not shown in their respective tables in ANSI B18.2.1 or ANSI B18.2.3.1M may be that shown in the corresponding Hex Cap Screw and Bolt Tables respectively. Socket head fasteners shall be in accordance with ANSI B18.3 or ANSI B18.3.1M.

11. Retests

11.1 If the results of the mechanical tests of any test lot do not conform to the requirements specified, the manufacturer may retreat such lot not more than twice, in which case two additional tension tests shall be made from such lot, all of which shall conform to the requirements specified.

12. Test Specimens

12.1 *Number of Tests*—For heat-treated bars, one tension test shall be made for each diameter of each heat represented in each tempering charge. When heat treated without interruption in continuous furnaces, the material in a lot shall be the same heat, same prior condition, same size, and subjected to the

(2)